Классификация и обозначения полупроводниковых приборов Выполнено: Тепликов И. Сенюков Е. Урок-исследование "полупроводниковые приборы" Виды полупроводников и их проводимостей










1 из 9

Презентация на тему: полупроводниковые приборы

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

№ слайда 5

Описание слайда:

Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).

№ слайда 6

Описание слайда:

Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

№ слайда 7

Описание слайда:

Классификация транзисторов: Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

№ слайда 8

Описание слайда:

В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

№ слайда 9

Описание слайда:

Индикатор Электрóнный индикáтор - это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Материал презентации может быть использован, как ввовное занятие на уроках физики, информатики или электротехники для объяснения работы полупроводников. Рассмотрена классификация веществ по типу проводимости. Дается объяснение собственной и примесной проводимости. Объяснена работа p-n - перехода. Диод и его свойства. Кратко дается понятие о транзисторах.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация по теме: «Полупроводники» Преподаватель: Виноградова Л.О.

Классификация веществ по проводимости Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства Полупроводниковый диод и его применение Транзисторы Электрический ток в различных средах Электрический ток в полупроводниках

Классификация веществ по проводимости Разные вещества имеют различные электрические свойства, однако по электрической проводимости их можно разделить на 3 основные группы: Электрические свойства веществ Проводники Полупроводники Диэлектрики Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au , Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge , Se, In, As

Классификация веществ по проводимости Вспомним, что проводимость веществ обусловлена наличием в них свободных заряженных частиц Например, в металлах это свободные электроны - - - - - - - - - - К содержанию

Собственная проводимость полупроводников Рассмотрим проводимость полупроводников на основе кремния Si Si Si Si Si Si - - - - - - - - Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток

Собственная проводимость полупроводников Рассмотрим изменения в полупроводнике при увеличении температуры Si Si Si Si Si - - - - - - + свободный электрон дырка + + При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток - -

Собственная проводимость полупроводников Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается R (Ом) t (0 C) R 0 металл полупроводник К содержанию

Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные Донорные примеси Si Si As Si Si - - - - - - - При легировании 4 – валентного кремния Si 5 – валентным мышьяком As , один из 5 электронов мышьяка становится свободным Таким образом изменяя концентрацию мышьяка, можно в широких пределах изменять проводимость кремния Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной Примесная проводимость полупроводников - -

Примесная проводимость полупроводников Акцепторные примеси Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка Si Si In Si Si - - - - - + Изменяя концентрацию индия, можно в широких пределах изменять проводимость кремния, создавая полупроводник с заданными электрическими свойствами Такой полупроводник называется полупроводником p – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной - -

Примесная проводимость полупроводников Итак, существует 2 типа полупроводников, имеющих большое практическое применение: р - типа n - типа Основные носители заряда - дырки Основные носители заряда - электроны + - Помимо основных носителей в полупроводнике существует очень малое число неосновных носителей заряда (в полупроводнике p – типа это электроны, а в полупроводнике n – типа это дырки), количество которых растет при увеличении температуры К содержанию

p – n переход и его свойства Рассмотрим электрический контакт двух полупроводников p и n типа, называемый p – n переходом + _ 1. Прямое включение + + + + - - - - Ток через p – n переход осуществляется основными носителями заряда (дырки двигаются вправо, электроны – влево) Сопротивление перехода мало, ток велик. Такое включение называется прямым, в прямом направлении p – n переход хорошо проводит электрический ток р n

p – n переход и его свойства + _ 2. Обратное включение + + + + - - - - Основные носители заряда не проходят через p – n переход Сопротивление перехода велико, ток практически отсутствует Такое включение называется обратным, в обратном направлении p – n переход практически не проводит электрический ток р n Запирающий слой К содержанию

Полупроводниковый диод и его применение Полупроводниковый диод – это p – n переход, заключенный в корпус Обозначение полупроводникового диода на схемах Вольт – амперная характеристика полупроводникового диода (ВАХ) I (A) U (В) Основное свойство p – n перехода заключается в его односторонней проводимости

Полупроводниковый диод и его применение Применение полупроводниковых диодов Выпрямление переменного тока Детектирование электрических сигналов Стабилизация тока и напряжения Передача и прием сигналов Прочие применения

До диода После диода После конденсатора На нагрузке Полупроводниковый диод и его применение Схема однополупериодного выпрямителя

Полупроводниковый диод и его применение Схема двухполупериодного выпрямителя (мостовая) вход выход + - ~

Транзисторы p-n-p канал p- типа n-p-n канал n- типа Условные сокращения: Э - эмиттер, К - коллектор, Б – база. Транзистор был первым полупроводниковым устройством, способным выполнять такие функции вакуумного триода (состоящего из анода, катода и сетки), как усиление и модуляция. Транзисторы вытеснили электронные лампы и произвели революцию в электронной промышленности.


Представлена презентация, которую можно использовать на уроках физики, а также на занятиях по электротехнике и основам электроники в средних профессиональных образовательных учреждениях. В работе изложена тема “полупроводниковые приборы”.

Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников.

K полупроводникам относятся элементы четвертой группы таблицы Менделеева, имеющих кристаллическую структуру. Наиболее распространенными являются германий, кремний, селен.

K полупроводникам также относятся окислы металлов - оксиды, соединения с серой - сульфиды, соединения с селеном – селениды.

Виды полупроводников и их проводимостей. Собственный полупроводник - это беспримесный полупроводник.

Процесс возникновения свободных электронов и дырок называется генерацией носителей заряда.

B полупроводнике возможен процесс, обратный процессу генерации - рекомбинация. При рекомбинации происходит уничтожение пары зарядов электрон-дыркаКонцентрация носителей заряда, а следовательно, и электропроводность в полупроводнике возрастает с увеличением температуры. При температуре концентрация носителей заряда для чистого Ge равна 10 13 см -3 , для Si – 10 11 см -3 .

Этот полупроводник обладает собственной проводимостью, которая складывается из электронов и дырок в равных количествах

3 слайд:

Виды полупроводников и их проводимостей

Электронный полупроводник

Проводимость такого типа называется электронной или n-типа (от negative - отрицательный).

Примесь, дающая избыток электронов называется донорной (дающей электроны - основные носители зарядов, а дырки - неосновные.

Дырочный полупроводник

Дырочным (p-типа) называется примесный полупроводник, валентность атомов примеси которого меньше валентности атомов чистого полупроводника. Например, германий с примесью индия. Проводимость такого полупроводника будет определяться дырками и называется дырочной или р -типа (от positive – положительный).

Примесь, дающая избыток дырок, называется акцепторной (принимающей).

Дырки - основные носители зарядов, а электроны - неосновные.

5 слайд:

Полупроводниковые диоды

1. Случай отсутствия напряжения.

Область, в которой образуется двойной электрический слой и электрическое поле называется электронно-дырочным n-p - переходом.

Основные носители заряда, перемещаясь через n-p – переход, создают ток диффузии. Движение неосновных носителей заряда создает ток проводимости.

B состоянии равновесия эти токи равны по величине и противоположны по направлению. Тогда результирующий ток через переход равен нулю.

2. Случай прямого напряжения.

Такой полярности напряжение называется прямым.

При прямом напряжении внешнее поле ослабляет поле n-p – перехода.

Переход основных носителей заряда будет преобладать над переходом неосновных носителей заряда. Через переход пойдет прямой ток. Этот ток велик, т.к. определяется основными носителями заряда.

3. Случай обратного напряжения.

Через n-p – переход переходят только неосновные носители заряда: дырки из n – полупроводника и электроны из р – полупроводника. Они и создают во внешней цепи ток, противоположный прямому току – обратный ток. Он примерно в тысячу раз меньше прямого тока, т.к. определяется неосновными носителями зарядов.

8 слайд:

Вольтамперная характеристика диода

При увеличении обратного напряжения потоки основных носителей заряда уменьшаются, обратный ток увеличивается.

Дальнейшее увеличение U обр увеличивает ток незначительно, т.к. он определяется потоками неосновных носителей заряда.

Основное свойство диодов: т.к. диоды хорошо проводят ток в прямом направлении и плохо в обратном, то они обладают свойством односторонней проводимости, являются электрическими вентилями и используются в схемах выпрямителей переменного тока.

9 слайд:

Типы диодов

Устройство плоскостного диода

Устройство точечного диода

Обозначение полупроводниковых диодов на схемах.

10 слайд:

Опорные кремниевые диоды

Этот диод устроен так, что повышение обратного напряжения (приложенного к n-p – переходу) выше некоторого предела приводит к пробою диода - быстрому возрастанию обратного тока I обр при постоянном значении обратного напряжения U обр.

Если ток через диод превысит I maх, то это приведет его к перегреву и разрушению. Рабочим участком характеристики является участок отI min доI maх , который используется для стабилизации напряжения. Опорные диоды используются для стабилизации напряжения и создают опорное (эталонное) напряжение. Поэтому они называются кремниевыми стабилитронами.


Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.


Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.


Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).


Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.


Классификация транзисторов: Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.


В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.


Индикатор Электрóнный индикáтор - это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Работа может использоваться для проведения уроков и докладов по предмету "Физика"

Наши готовые презентации по физике делают сложные темы урока простыми,интересными и легкоусвояемыми. Большинство опытов, изучаемых на уроках физики, невозможно провести в обычных школьных условиях, показать такие опыты можно с помощью презентаций по физике.В данном разделе сайта Вы можете скачать готовые презентации по физике для 7,8,9,10,11 класса, а также презентации-лекции и презентации-семинары по физике для студентов.

Поделиться